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1. Introduction

In SU(N) QCD, it is believed that particle confinement in the strong coupling regime

happens due to chromoelectric strings (QCD strings). Many properties of the QCD strings

have been studied intensely in the last years using lattice calculation. On the other hand,

it is believed that QCD strings in the strong coupling may be dual to chromomagnetic

strings in the Higgs phase in weak coupling, which are easier to study analytically. Since

QCD strings in confining phase should be formed only by SU(3) gauge fields and not U(1)

gauge fields, in recent years we are analyzing some properties of chromomagnetic ZN strings

solutions which appear in a theory with non-Abelian simple gauge group G (without U(1)

factors) broken to its center.

The ZN string solutions have many features similar to the QCD strings. In particular

they are associated to coweights of representations of G (or equivalently to weights of the

dual group1 G∨) and their topological sectors are associated to the center elements of the

gauge group G. More precisely, the coweights og G can be separated in cosets associated to

nodes of the extended Dynkin diagram of G. All ZN string solutions associated to coweights

in a given coset belong to the same topological sector [1]. The ZN strings associated to

the fundamental weights of different representations can have different tensions and for

different vacuum solutions, the BPS bounds for the tensions can satisfying either the sine

law scaling or the Casimir scaling [1, 2], differently from the non-Abelian semi-local BPS

string solutions with gauge group SU(N) × U(1) where the tension is only due magnetic

flux in the U(1) direction and it depends on the U(1) winding number [3]. It is important

to note that the Casimir scaling and the sine law scaling considered in [1, 2] are lower

bounds for the non-BPS ZN string tensions.

Previously we analyzed the ZN string in soft broken N = 2 [4, 5] and N = 4 [1]

Super Yang-Mills theories, but in [2] and here we do not constraint the potential to be

1We shall consider the dual group G
∨ as the covering group associated to the dual algebra g

∨.
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supersymmetric since we are interested in studying some general properties at the classical

level of the ZN strings which may be useful for QCD and not necessarily confinement

in supersymmetric theories. The ZN strings does not necessarily point in a direction

in the Cartan subalgebra (CSA). However, since the monopoles’ magnetic flux is in the

direction of the CSA [6], we only consider ZN string solutions with flux in the CSA which

are the relevant for confinement of these monopoles [5, 1] which may be dual to particle

confinement. This result is analogous to the Abelian dominance observed in QCD.

In the present work we show that ZN string’s BPS equations [4, 1] for Yang-Mills

theories with scalars in the adjoint are equivalent to the Hitchin’s equations [7] and con-

sequently to the four dimensional self-duality equation [7] and also equivalent to the zero

curvature condition [11], implying that this set of BPS ZN string solutions in non-Abelian

Yang-Mills theories is (quasi-)integrable. Integrability of BPS vortices in Abelian-Higgs

theory was recently considered in [8]. Integrability of other soliton solutions for theories

in dimensions higher than two are analyzed in [9]. In recent years, integrability also had a

renewed interest in gauge and string theories [10]. On the other hand, Hitchin’s equations

appeared in many distinct problems as for example in Matrix string theory [11, 12] and

more recently in connection with the geometric Langlands program [13]. Integrability of

Hitchin’s equations and self-duality equations are also discussed in [14, 15].

The equivalence of BPS ZN string equations with Hitchin’s equations, self-duality

equations and zero curvature condition is interesting because allows us to apply methods

and results of these systems to ZN string solutions and vice-versa.

In the U(1) Abelian-Higgs theory, the fields of rotationally symmetric BPS string

solutions can be written as functions of a field which satisfies Liouville’s equation plus a

constant and a singularity at the origin [16, 17]. In this work we generalize this result for

the ZN strings showing that, for a particular vacuum responsible for the gauge symmetry

breaking, the fields of the rotationally symmetric BPS Z(N) string solutions are functions

of a field which satisfies affine Toda field equation with a singularity at the origin.

In this paper we introduce, in section 2, some general results for BPS ZN strings

and show the equivalence of the ZN string BPS conditions with the Hitchin’s equations,

and consequently to self-duality equation and the zero curvature condition. In section 3

we construct an Ansatz for the ZN strings and show that the ZN string’s BPS equations

reduce to two dimensional integrable theories equations. In section 4 we show that for a

particular vacuum, the BPS ZN string solutions reduces to the equation of affine Toda

theory which is a deformation of conformal Toda theory. In section 5 we analyze the

special case of rotationally symmetric solutions. These solutions resemble the Riemannian

or stringy instantons of Matrix string theories [11, 12].

2. BPS ZN strings equations and the Hitchin’s equations

Let us consider Yang-Mills-Higgs theories with arbitrary gauge group G which is simple,

connected and simply connected. In order to exist strings and confined monopoles we shall

consider theories with two complex scalars fields φs, s = 1, 2, in the adjoint representation

of G. We also consider that the vacuum solutions φvac
1 , φvac

2 produce the symmetry breaking

– 2 –
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pattern

G
φvac

1→ U(1)r
φvac

2→ CG, (2.1)

where r is the rank of G and CG its center, which we consider to be nontrivial. The

Lagrangian of the theory we are to study is

L = −1

4
GaµνG

µν
a +

2∑

s=1

1

2
(Dµφs)

∗
a (Dµφs)a − V (φ, φ∗) (2.2)

where a is a Lie algebra index, Dµ = ∂µ + ie[Wµ, ] and Gµν = ∂µWν −∂νWµ + ie[Wµ,Wν ].

Let

z = x1 + ix2,

∂z =
1

2
(∂1 − i∂2) , (2.3)

Wz =
1

2
(W1 − iW2) ,

and Bi = −ǫijkGjk/2. For a static string solution with cylindrical symmetry in the x3

direction, the string BPS equations for a theory with gauge group G without U(1) factors

are [4, 1]2

B3a = −da, (2.4)

Dzφs = 0, (2.5)

Dz̄φ
†
s = 0, (2.6)

V (φ, φ∗) − 1

2
(da)

2 = 0, (2.7)

with

d =
e

2

2∑

s=1

[
φ†s, φs

]
− em

2
Re(φ1),

where m is a non-negative mass parameter. The string tension satisfies the bound

T ≥ me

2
|φvac

1 | |Φst| (2.8)

where

Φst =
1

|φvac
1 |

∫
d2xTr [Re (φ1)B3] (2.9)

is the string flux in the φ1 direction, with the integral being taking in the plane orthogonal

to the string. The equality in eq. (2.8) happens only for the strings satisfying the BPS

equations. We shall consider

V (φ, φ∗) =
1

2
(da)

2 , (2.10)

which guarantee that equation (2.7) is automatically fulfilled. Note that the BPS equa-

tion (2.7) does not restrict the potential to have this form. In [4, 5, 1] we considered soft

2For the sake of simplicity we shall only consider the string solutions which have positive flux Φst. For

the antistrings, one must use opposite signs in some of these equations as discussed in our previous works.
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broken N = 2 and N = 4 potentials. Similarly to the Prasad-Sommerfield limit [18] for

BPS monopoles, we take the limit m → 0 [4] in order for the BPS string equations to be

consistent with the equations of motion and retain the potential terms responsible for the

breaking of G into its center CG. Note that in this limit, the tensions T → 0, although the

ratio of the string tensions are finite and can satisfy the Casimir scaling law or the sine law

as discussed in [2] and in section 4.

Let g be the Lie algebra associated to the gauge group G and let the generators

Hi, i = 1, 2, . . . , r, form a basis for the Cartan subalgebra (CSA) h with rank r. Let us

adopt the Cartan-Weyl basis in which

Tr (HiHj) = δij ,

Tr (EαEβ) =
2

α2
δα+β ,

where the trace is taken in the adjoint representation. In this basis, the commutation

relations read

[Hi, Eα] = (α)iEα, (2.11)

[Eα, E−α] =
2α

α2
·H,

where α are roots and the upper index in (α)i means the component i of α. We denote by

αi and λi, i = 1, 2, . . . , r , the simple roots and fundamental weights of g respectively and

α∨
i =

2αi

α2
i

, λ∨i =
2λi

α2
i

(2.12)

are the simple co-roots and fundamental co-weights of g, and are also the simple roots and

fundamental weights of the dual algebra g∨. They satisfy the relations

αi · λ∨j = α∨
i · λj = δij .

Moreover,

αi = Kijλj (2.13)

where

Kij =
2αi · αj

α2
j

(2.14)

is the Cartan matrix associated to g. We denote by ψ the highest root of g. Considering

the convention that ψ2 = 2, the highest root can be written as

ψ =
r∑

i=1

miα
∨
i (2.15)

where mi are integers which are the levels (or marks) of the fundamental representations

which have λi as highest weights. For SU(n), mi = 1 for i = 1, 2, . . . , n− 1.

– 4 –
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In order to produce the symmetry breaking (2.1) we can consider a general vacuum

solution

φvac
1 = v ·H , v = viλ

∨
i , (2.16)

φvac
2 =

r∑

l=0

blE−αl
, (2.17)

where α0 = −ψ is the negative of the highest weight, vi are non-vanishing real constants,

bl are real constants and for l = 1, 2, . . . , r they can not vanish in order to G to be broken

into CG. Comparing with the general vacuum solutions considered in [1, 2], in (2.17) we

add a term associated to the root −α0 which does not change the symmetry breaking but

change some properties of the vacuum solutions as we shall explain bellow.

We usually consider ZN strings solutions with the gauge fields in the CSA with

Hi, i = 1, 2, . . . , r as basis generators which are the relevant for confinement of the stan-

dard monopole solution, since the monopoles have magnetic flux in direction of the CSA.

Then, as discussed in our previous works [4, 1], since the gauge fields are everywhere in

the Cartan subalgebra, from the BPS equations Dzφ1 = 0 and Dz̄φ
†
1 = 0 results that the

field φ1(x) is constant and equal to its asymptotic form (2.16), i.e.,

φ1(x) = v ·H. (2.18)

Then, the BPS equations (2.4)–(2.6) in the limit m → 0 reduce to

Gz̄z → − ie
4

[
φ†2, φ2

]
,

Dzφ2 = 0, (2.19)

Dz̄φ
†
2 = 0,

which are exactly the Hitchin’s equations [7].

As it is known, these equations are equal to a reduction to two dimensions of the

self-duality equation in Euclidean four dimensions [7],

Gµν =
1

2
ǫµνρσGρσ,

with gauge fields Wi = Wi for i = 1, 2 and

W3 = φ2r, (2.20)

W4 = φ2i,

where φ2r and φ2i are respectively the real and imaginary parts of φ2 and imposing that

the fields does not depend on the extra dimensions with coordinates x3 and x4.

The Equations (2.19) can also be written in the form of a zero curvature condition in

two dimensions considering the connection [11]

Az = Wz +
λ

2
φ†2, (2.21)

Az̄ = Wz̄ −
1

2λ
φ2,

– 5 –
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where λ is a spectral parameter. Then,

Fz̄z = ∂z̄Az − ∂zAz̄ + ie [Az̄,Az]

=

(
Gz̄z +

ie

4

[
φ†2, φ2

])
+
λ

2
Dz̄φ

†
2 +

1

2λ
Dzφ2.

Therefore, the system of equations (2.19) is equivalent to a zero curvature condition which

implies the classical integrability of the set of BPS ZN string solutions. More precisely, due

to the limit m→ 0, we have the condition Fz̄z → 0, which we could call quasi-integrability

condition. However, for simplicity we will use the equal sign in the following integrable

equations.

The flat connection Az,Az̄ can be written in terms of the self-dual fields Wi (2.20) as

Az =
1

2
(W1 − iW2) +

λ

2
(W3 − iW4) , (2.22)

Az̄ =
1

2
(W1 + iW2) −

1

2λ
(W3 + iW4) .

The equivalence of BPS ZN string equations, with the Hitchin’s equations, self-duality

equations and zero curvature condition is interesting because it allows to apply methods

and results of these systems to the ZN string solutions and vice-versa.

In the next section we show that for ZN string solutions constructed from different

vacuum are associated to different integrable field equations.

3. BPS ZN string solutions

In the Higgs phase of the theory, when G is broken to its center CG which we consider

to be non-trivial, there exist ZN string solutions and the monopoles are confined by these

strings. In order to have finite string tension, asymptotically these solutions have the form

φs(ϕ, ρ→ ∞) = g(ϕ)φvac
s g(ϕ)−1, s = 1, 2, (3.1)

Wi(ϕ, ρ→ ∞) =
i

e
(∂ig(ϕ)) g(ϕ)−1, i = 1, 2,

where φvac
s are the vacuum solutions (2.16), (2.17), ρ and ϕ are the radial and angular

coordinates. In order for the configuration to be single valued, g(ϕ + 2π)g(ϕ)−1 ∈ CG.

Considering

g(ϕ) = exp iϕM, where M = ω ·H

it implies that exp(2πiω ·H) ∈ CG, which results that ω ∈ Λw(G∨), where

Λw(G∨) =

{

ω =

r∑

i=1

niλ
∨
i , ni ∈ Z

}

(3.2)

is the coweight lattice ofG or equivalently the weight lattice of the dual groupG∨. Then, us-

ing the vacuum solutions (2.16), (2.17), the asymptotic form of the ZN string solution (3.1)

– 6 –
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can be written as

φ1(ϕ, ρ → ∞) = v ·H,

φ2(ϕ, ρ → ∞) =
r∑

i=0

bi {exp (−iϕω · αi)}E−αi
, (3.3)

Wi(ϕ, ρ → ∞) =
ǫijx

j

eρ2
ω ·H, i = 1, 2.

Therefore, for each weight ω of the dual group G∨ we can construct a string solution. In [1]

is shown how these strings are separated in different topological sectors.

As mentioned before, we can take φ1(ϕ, ρ) = v · H for the whole space. In order to

determine the other fields for the whole space we consider the Ansatz

φ2(ρ, ϕ) =

r∑

i=0

fi(ρ, ϕ)biE−αi
exp(−iY (ρ, ϕ) · αi). (3.4)

Similarly to the string solution in the Abelian Higgs model, if ω is such that for a given

αi, the scalar product ω · αi 6= 0, then the corresponding function fi(ρ, ϕ) must have some

zeros since from the asymptotic form (3.3) we see that the terms with ω ·αi 6= 0 have non-

vanishing winding number. We can rewrite this Ansatz, similarly to the string solutions in

the Abelian Higgs model [16, 19], as

φ2(ρ, ϕ) = G(ρ, ϕ)φvac
2 G−1(ρ, ϕ) (3.5)

where φvac
2 is the vacuum solution (2.17) and

G(ρ, ϕ) = exp [Z(ρ, ϕ) ·H] , Z(ρ, ϕ) = −e
2
X(ρ, ϕ) + iY (ρ, ϕ),

with Z(ρ, ϕ), X(ρ, ϕ) and Y (ρ, ϕ) being r component real functions with 2 ln fi = eX · αi.

The points where fi(ρ, ϕ) vanishes,X ·αi has a logarithmic singularity. From the asymptotic

form (3.3) we can conclude that for ρ→ ∞,

X(ρ→ ∞, ϕ) = 0,

Y (ρ→ ∞, ϕ) = ϕω.

For the special case of rotationally symmetric solutions, we can consider Y (ρ, ϕ) = ϕω and

X(ρ, ϕ) = X(ρ) is a radial function. This ansatz can be used for any ZN string solution,

not only BPS.

From eq. (3.5) results that

∂zφ2 =
[
(∂zG)G−1, φ2

]
.

Therefore, from the BPS equation Dzφ2 = 0, we can conclude that

Wz =
i

e
(∂zG)G−1 + Fz =

i

e
∂z (Z ·H) + Fz (3.6)

– 7 –
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where Fz(x) is a Lie algebra valued function which commutes with φ2. On the other hand,

from the BPS equation Dzφ1 = 0 and the fact that φ1(x) = v · H, implies Fz(x) should

belong to the CSA. Since φ2 is not in the CSA, it implies that Fz(x) = 0. Similarly, by

computing ∂z̄φ
†
2 and repeating the above argument we can conclude that

Wz̄ =
i

e
∂z̄

(
G−1

)†
G† = − i

e
∂z̄

(
Z† ·H

)
. (3.7)

Note that G† 6= G−1.

Therefore, from the first BPS equation in (2.19) results that X satisfies3

∂z̄∂z (X ·H) − e

4

[
eeX·H (φvac

2 )† e−eX·H , φvac
2

]
= 0. (3.8)

This is the equation of motion of an Euclidean two dimensional integrable system since

it equivalent to the zero curvature condition with the connection (2.21) using the fields

configurations (3.5), (3.6) and (3.7) (which are solutions of Dzφ2 = 0 and Dz̄φ
†
2 = 0), that

is

Az =
i

e
∂z(Z ·H) +

λ

2
exp

(
−Z† ·H

)
(φvac

2 )† exp
(
Z† ·H

)
, (3.9)

Az̄ = − i

e
∂z̄(Z

† ·H) − 1

2λ
exp (Z ·H)φvac

2 exp (−Z ·H) .

Using the fact that φvac
2 =

∑r
l=0 blE−αl

, we can write eq. (3.8) as

∂z̄∂zX − e

4

r∑

j=0

b2jα
∨
j e

eαj ·X = 0, (3.10)

remembering that X is an r component scalar field. For the vacuum solutions with b0 = 0,

we define

Xαi
= αi ·X, i = 1, 2, . . . , r.

Then, eq. (3.10) can be written as

∂z̄∂zXαi
− e

4

r∑

j=1

Kijb
2
j exp

(
eXαj

)
= 0, (3.11)

where Kij is the Cartan matrix (2.14).

On the other hand, for vacuum solutions with b0 6= 0, we define

Xαi
= αi ·X, i = 0, 1, 2, . . . , r. (3.12)

In this case, eq. (3.10) can be written as

∂z̄∂zXαi
− e

4

r∑

j=0

K̂ijb
2
j exp

(
eXαj

)
= 0, i = 0, 1, 2, . . . , r (3.13)

3In order to arrive to this equation we are not considering the points where X has a singularity. We

discuss more on this issue in the last section.
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where K̂ij is the extended Cartan matrix which has the same form as the Cartan matrix

eq. (2.14), but with i, j = 0, 1, . . . , r, and are associated to untwisted affine Lie algebras.

However, from (2.15) and the fact that α0 = −ψ we can conclude that

r∑

i=0

miα
∨
i = 0,

where we consider m0 = 1. Therefore, the fields Xαi
in (3.12) are not independent but

satisfy the constraint
r∑

i=0

2mi

α2
i

Xαi
= 0.

Therefore, equation (3.13) must be subject to this constraint [20].

As we mentioned before, for a ZN string solution associated to a vector ω, for the

terms in eq. (3.4) where ω ·αi 6= 0, the corresponding function fi must have some zeros and

hence Xαi
= αi · X has logarithmic singularities. Therefore equations (3.11) and (3.13)

are valid except at the singularities of Xαi
. Similarly to the Abelian case [16, 17], we can

allow for these singularities by including delta-functions on the right hand side of the above

equations.

4. A vacuum solution and affine Toda field theories

Let us now consider a concrete vacuum solution. In order to be a vacuum solution of the

potential (2.10), the constants in (2.16), (2.17), must satisfy the relation

m
(
K−1

)
ij
vj = b2i −mib

2
0. (4.1)

In [1, 2] we analyzed two vacuum solutions with b0 = 0, which are valid for any gauge

group G:

a) The first vacuum solution we considered was

vi = a, (4.2)

bi =

√√√√ma

r∑

j=1

(K−1)ij =
√
maδ · λi , i = 1, 2, . . . , r, (4.3)

where a is a positive real constant and δ =
∑r

i=1 λ
∨
i is the dual Weyl vector. With

this vacuum, the ZN strings tensions satisfy the Casimir scaling [1].

b) The second vacuum solution was

vi = ay
(1)
i , (4.4)

bi =
1

2 sin π
2h

√
may(1) , i = 1, 2, . . . , r, (4.5)

where a is a positive real constant and y
(1)
i are the components of the Perron-Frobenius

eigenvectors of Kij associated to the eigenvalue 4 sin2 π
2h

. With this vacuum, the ZN

strings tensions satisfy the sine law scaling [2].

– 9 –
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As mentioned before, in order for the ZN string’s BPS equations to be consistent with

the equations of motion we must take the limit m → 0. Therefore, for the constants bi
or equivalently φvac

2 to be finite, we must take a → ∞ (and therefore vi → ∞) keeping

the product ma finite [2]. Another possibility we use here is to consider the vacuum

solutions (2.16), (2.17) with b0 6= 0 in which case we can keep a finite. One can see this

from eq. (4.1) which implies that

bi =
√
m (K−1)ij vj +mib20. (4.6)

From this equation, considering that vj is finite, when we take m→ 0, it implies that

bi →
√
mib0

which is finite with b0 being an arbitrary non-vanishing constant. That result hold when

the components vj satisfy either (4.2) or (4.4). In each case, the ratio of tensions of the BPS

ZN strings will continue to satisfy the Casimir scaling or the sine law scaling respectively.

The vacuum solution (2.17) will stay

φvac
2 = b0

r∑

l=0

√
miE−αl

= b0E, (4.7)

where

E =

r∑

i=0

√
miEαi

and therefore asymptotically

φ2(ϕ, ρ → ∞) = b0

r∑

i=0

√
mi {exp (−iϕω · αi)}E−αi

. (4.8)

The generator E satisfy [E,E†] = 0. Hence it is diagonalizable and can be embedded in a

new Cartan subalgebra. This generator was originally introduced by Konstant [21].

For this vacuum we can write (3.8) as

∂z̄∂z (X ·H) − eb20
4

[
eeX·HE†e−eX·H , E

]
= 0, (4.9)

It can also be written as

∂z̄∂zX − eb20
4

r∑

j=0

mjα
∨
j exp (eαj ·X) = 0 (4.10)

or

∂z̄∂zXαi
− eb20

4

r∑

j=0

K̂ijmj exp
(
eXαj

)
= 0. (4.11)

Eq. (4.9) (or (4.10), (4.11) ) is the equation of motion of Euclidean two dimensional

integrable affine Toda field theory associated to the affine untwisted Lie algebra ĝ obtained

from g, with coupling constant e, equal to the coupling constant of the gauge theory,

– 10 –
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and mass parameter equal to eb0. In [2] was shown that the spectrum of BPS string

tensions in the second vacuum solution (4.4) coincide with the solitons mass spectrum of

the corresponding affine Toda theory.

It is interesting to note that the monopole’s BPS equations with spherical symmetry

reduces to the equation of conformal Toda theory [22]. The equation of Affine Toda theory

was also obtained from Hitchin’s equations for U(N) matrix theory in [11], but with some

differences as we discuss in the next section. A relation between Hitchin equations and

integrable systems was also consider in [14]. For g = su(2), considering α1 = 1 = −α0,

equation (4.10) reduces to the sinh-Gordon equation

∂z̄∂zX − eb20
2

sinh (eX) = 0.

5. Rotationally symmetric solutions

Let us now consider the special case of rotationally symmetric solutions. In this case for a

ZN string associated with the vector ω of the weight lattice of dual group G∨, Y (ρ, ϕ) = ϕω

and X(ρ, ϕ) = X(ρ) is a radial function, and hence

Z(ρ, ϕ) = −e
2
X(ρ) + iϕω. (5.1)

Therefore, in this case the scalar fields has the form

φ1(ϕ, ρ) = v ·H, (5.2)

φ2(ϕ, ρ) = b0

r∑

i=0

√
mi

{
exp

(e
2
X · αi − iϕω · αi

)}
E−αi

. (5.3)

Generalizing some results from stringy instantons of matrix string theories [11, 12], we

can determine the form of the gauge fields: since 2ϕ = −i ln(z/z̄), the gauge fields (3.6)

and (3.7) are given by

Wz =
i

2

[
−∂z (X ·H) +

1

ez
ω ·H

]
, (5.4)

Wz̄ = − i

2

[
−∂z̄ (X ·H) +

1

ez̄
ω ·H

]
.

Using that ∂z(1/z̄) = πδ(2)(x), we obtain that the magnetic field of the ZN string is

B3 = −2iGz̄z = −2
[
∂z̄∂z (X ·H) − π

e
ω ·Hδ(2)(x)

]
. (5.5)

From the requirement of regularity at z = 0 implies that near the origin

∂z̄∂z (X ·H) ∼ π

e
ω ·Hδ(2)(x) + const.

Therefore, near the origin

X(ρ→ 0) ∼ −2

e
ω ln |z| + const. (5.6)
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On the other hand, for ρ → ∞, X(ρ → ∞) → 0, as we mentioned before. Eq. (5.6) is

consistent with the fact that in the general case (not necessarily rotationally symmetric),

Xαi
= αi ·X has a logarithmic singularity if αi · ω 6= 0.

From (5.2) and (5.5) we conclude that the flux (2.9) of a string associated to the

coweight w is

Φst =
2π

e

ω · v
|v| ,

which is consistent with the result in [1] using just the asymptotic form of the ZN string

solution (3.3).

From eq. (4.11) and the behavior of the solution near the origin (5.6) we can conclude

that for the special case of rotationally symmetric solutions, for a ZN string associated

with a coweight w, the radial function X(ρ) must satisfy

∂2X

∂ρ2
+

1

ρ

∂X

∂ρ
− eb20

r∑

j=0

α∨
j mj exp (eαj ·X) =

4π

e
ωδ(2)(x) (5.7)

or

∂2Xαi

∂ρ2
+

1

ρ

∂Xαi

∂ρ
− eb20

r∑

j=0

K̂ijmj exp
(
eXαj

)
=

4π

e
ω · αiδ

(2)(x). (5.8)

One could arrive directly to this equation with the singularity using (5.1) and (5.4) in the

BPS equation (2.4) or in the connection (3.9). That result is similar to the string solution

in the Abelian-Higgs theory where for a rotationally symmetric configuration Ansatz the

radial function, satisfies a rotationally symmetric form of a Liouville’s equation plus a

constant with a δ-function at the origin [16, 17]. Note that our conditionm→ 0 corresponds

to take the limit a→ 0 for the constant appearing in the potential in Abelian-Higgs theory,

in which case the radial function of the string solution would satisfy Liouville’s equation

with a δ-function at the origin.

The ZN string solutions have great similarity with the Riemannian or stringy instan-

tons of matrix string theories [11, 12], but also some differences: in the matrix stringy

theories there is no gauge symmetry breaking. For the stringy instantons, the scalar field

has a branch cut in the origin instead of a zero for φ2(ρ, ϕ) for the rotationally symmetric

ZN strings. They also have different angular dependence since the ZN string solutions

are associated to classes of Π1(G/CG). Moreover, the affine Toda equation associated to

stringy instantons [11] has a singularity structure different from (5.7).

Eqs. (5.7) or (5.8) with source is equivalent to the homogeneous equation with the

boundary (5.6) near the origin. In general to solve “Toda type theories” one can apply

Leznov-Saveliev method [23]. Solutions for a similar equation for g = su(2) with singularity

were analyzed in [24]. Soliton solutions of Affine Toda theories (which have different

boundary condition) were analyzed for example in [25, 20] for different algebras g. Similar

methods may be can applied for this case with different boundary conditions.
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